Appunti di Matematica

Tiziano Granucci

ISTITUTO GOBETTI - VOLTA, VIA ROMA 77, BAGNO A RIPOLI, FIRENZE

 $E ext{-}mail\ address:$ tizianogranucci@libero.it

 URL : http://tizianogranucci.wix.com/tiziano-granucci

Contents

Insiemi v

Insiemi

DEFINITION 1. Un insieme è una collezine di oggetti che sono detti elementi dell'insieme.

Remark 1. Sia A un insieme, con la scrittura $a \in A$ (che leggeremo a appartiene ad A) intediamo indicare che a è un elemento di A.

Remark 2. Con la scrittura $a \notin A$ (che leggeremo a non appartiene ad A) intendiamo indicare che a non è un elemento di A.

tra gli insiemi ne esiste uno molto particolare, l'insieme vuoto cioé l'insieme privo di elementi.

Definition 2. Con il simbolo \emptyset indichiamo l'insieme vuoto, cioè l'insieme privo di elementi.

Altri esempi di insiemi numerici possono essere i seguenti.

$$(0.1)$$
 $\mathbb{N} = \{0,1,2,3,4,\ldots\}$ è l'insieme dei numeri Naturali

(0.2)
$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$$
è l'insieme dei numeri Interi

(0.3)
$$\mathbb{Z}^* = \mathbb{Z} \setminus \{0\} = \{..., -2, -1, 1, 2, ...\}$$
 è l'insieme dei numeri Interi non nulli

(0.4)
$$\mathbb{Q} = \left\{ \frac{N}{D} : N \in \mathbb{Z} \text{ e } D \in \mathbb{Z}^* \right\} \text{ è l'insieme dei numeri Razionali}$$

Più in generale si può definire un insieme utilizzando una proprietà; un esempio è

$$(0.5) A = \{x : P(x)\},\,$$

tale scrittura si legge A è l'insieme degli elementi x che tali che la proprietà P(x) è vera, cioè gli x che verificano la proprietà P(x).

Example 1. Sia $A = \{n \in \mathbb{N} : n = 2k \text{ con } k \in \mathbb{N}\}$, si legge A è l'insieme dei numeri naturali n tali che $n = 2k \text{ con } k \in \mathbb{N}$, cioè A è l'insieme dei numeri naturali che sono multipi di 2 (Numeri Pari). In particolare si ha $A \subset \mathbb{N}$.

Example 2. Sia $A = \{n \in \mathbb{N} : n = 2k+1 \ con \ k \in \mathbb{N}\}$, si legge A è l'insieme dei numeri naturali n tali che $n = 2k+1 \ con \ k \in \mathbb{N}$, cioè A è l'insieme dei numeri naturali che sono multipi di 2 più 1 (Numeri Dispari). In particolare si ha $A \subset \mathbb{N}$.

DEFINITION 3. Siano A e B due insiemi; diremo che B è un sottoinsieme di A [scriveremo $B \subset A$]se ogni elemnto di B è un elemento di A; cioè se $b \in B \Longrightarrow b \in A$ (che leggeremo se b appartiene a B allora b appartiene ad A).

v

vi INSIEMI

Example 3. I numeri pari, $2\mathbb{N}$, sono un sotto insieme di \mathbb{N} e scriveremo $2\mathbb{N} \subset \mathbb{N}$.

Example 4. I numeri multipli di 3, $3\mathbb{N}$, sono un sotto insieme di \mathbb{N} e scriveremo $3\mathbb{N} \subset \mathbb{N}$.

Example 5. I numeri dispari, $2\mathbb{N}+1$, sono un sotto insieme di \mathbb{N} e scriveremo $2\mathbb{N}+1\subset\mathbb{N}$.

Example 6. I numeri naturali sono un sotto insieme dei numeri interi e scriveremo $\mathbb{N} \subset \mathbb{Z}$..

DEFINITION 4. Sia A un insieme allora $\mathcal{P}(A)$ è l'insieme delle parti di A, cioè l'insieme i cui elementi sono tutti i sottoinsiemi di A.

EXAMPLE 7. Sia $A = \{4,7\}$ allora $\mathcal{P}(A) = \{\emptyset, \{4\}, \{7\}, \{4,7\}\}$.

EXAMPLE 8.
$$Sia\ A = \{1, 2, 3\}\ allora\ \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

Definition 5. Sia A un insieme allora con #(A) è la numerosità di A.

Example 9. Sia $A = \{4,7\}$ allora #(A) = 2.

Example 10. Sia $A = \{1, 2, 3\}$ allora #(A) = 3.

Lemma 1. Sia A un insieme allora

(0.6)
$$\# (\mathcal{P}(A)) = 2^{\#(A)}.$$

Example 11. $Sia\ A = \{1,2,3\}\ allora\ \mathcal{P}\ (A) = \{\emptyset,\{1\}\,,\{2\}\,,\{3\}\,,\{1,2\}\,,\{1,3\}\,,\{2,3\}\,,\{1,2,3\}\},\ inoltre\ \#\ (\mathcal{P}\ (A)) = 2^{\#(A)} = 2^3 = 8.$

Esistono insiemi che hanno numerosità infinita tipo \mathbb{N} , \mathbb{Z} e \mathbb{Q} , ma anche l'insieme dei numeri pari, $2\mathbb{N}$, ha numerosità infinita.

DEFINITION 6. Siano A e B due insiemi con $B \setminus A$ si indica l'insieme degli elementi $b \in B$ tali che $b \notin A$;

$$(0.7) B \backslash A = \{ x \in B : x \notin A \}.$$

Example 12. Siano $A = \{1, 2, 3\}$ e $B = \{1, 2, 3, 4, 5\}$ allora $B \setminus A = \{4, 5\}$.

Example 13. Siano $P = \{n \in \mathbb{N} : n = 2k \text{ con } k \in \mathbb{N}\} \ e \ D = \{n \in \mathbb{N} : n = 2k+1 \text{ con } k \in \mathbb{N}\} \ allora \ \mathbb{N} \setminus P = D \ e \ \mathbb{N} \setminus D = P.$

Definition 7. Siano A e B due insiemi allora

$$(0.8) A \cup B = \{x : x \in A \ o \ x \in B\}.$$

Example 14. Siano $A = \{-1, -2, 3\}$ e $B = \{1, 2, 3, 4, 5\}$ allora $B \cup A = \{-1, -2, 1, 2, 3, 4, 5\}$.

Example 15. Siano $P = \{n \in \mathbb{N} : n = 2k \text{ con } k \in \mathbb{N}\} \text{ } eD = \{n \in \mathbb{N} : n = 2k+1 \text{ con } k \in \mathbb{N}\} \text{ } allora P \cup D = \mathbb{N}.$

Definition 8. Siano A e B due insiemi allora

$$(0.9) A \cap B = \{x : x \in A \ e \ x \in B\}.$$

Example 16. Siano $A = \{-1, -2, 3\}$ $e B = \{1, 2, 3, 4, 5\}$ allora $B \cap A = \{3\}$.

INSIEMI vii

Example 17. Siano $P = \{n \in \mathbb{N} : n = 2k \text{ con } k \in \mathbb{N}\} \text{ } eD = \{n \in \mathbb{N} : n = 2k+1 \text{ con } k \in \mathbb{N}\} \text{ } allora P \cap D = \emptyset.$

Definition 9. Siano A e B due insiemi allora si dicono disgunti se $A \cap B = \emptyset$.

DEFINITION 10. Sia Ω un insieme una famiglia $\{E_i\}$ di sottoinsiemi di Ω , cioè $E_i \subset \Omega$ per ogni indice i, si dice una Partizione di Ω se $\Omega = \bigcup_i E_i$ e inoltre $E_i \cap E_j = \emptyset$ se $i \neq j$, E_i sono a due a due disguinti tra loro.

Definition 11. Siano A e B due insiemi allora

$$(0.10) A \times B = \{(a, b) : a \in A \ e \ b \in B\}$$

è detto insieme prodotto cartesiano di A e B.

Example 18. Se
$$A = \{1, 2\}$$
 e $B = \{5, 7\}$ allora $A \times B = \{(1, 5), (1, 7), (2, 5), (2, 7)\}$.

Remark 3. In generale si ha $A \times B \neq B \times A$. Un esempio semplice è dato dal precedente esempio; se $A = \{1,2\}$ e $B = \{5,7\}$ allora $A \times B = \{(1,5),(1,7),(2,5),(2,7)\}$ mentre $B \times A = \{(5,1),(5,2),(7,1),(7,2)\}$, quindi $A \times B \neq B \times A$.

Remark 4. Se #(A) = N e #(B) = M allora $\#(A \times B) = NM$.